THE HOMOLOGY REPRESENTATIONS OF THEk - EQUAL PARTITION

نویسندگان

  • Sheila Sundaram
  • Michelle Wachs
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE HOMOLOGY REPRESENTATIONS OF THE k-EQUAL PARTITION LATTICE

We determine the character of the action of the symmetric group on the homology of the induced subposet of the lattice of partitions of the set {1, 2, . . . , n} obtained by restricting block sizes to the set {1, k, k + 1, . . . }. A plethystic formula for the generating function of the Frobenius characteristic of the representation is given. We combine techniques from the theory of nonpure she...

متن کامل

The Hopf Trace Formula and Products of Posets

The primary aim of this paper is to illustrate the use of a well-known technique of algebraic topology, the Hopf trace formula, as a tool in computing homology representations of posets. Inspired by a recent paper of Bjj orner and Lovv asz ((BL]), we apply this tool to derive information about the homology representation of the symmetric group S n on a class of subposets of the partition lattic...

متن کامل

Partition complexes , duality and integral tree representations

We show that the poset of non-trivial partitions of {1, 2, . . . , n} has a fundamental homology class with coefficients in a Lie superalgebra. Homological duality then rapidly yields a range of known results concerning the integral representations of the symmetric groups Σn and Σn+1 on the homology and cohomology of this partially-ordered set. AMS Classification 05E25; 17B60, 55P91

متن کامل

Partition complexes , duality and integral tree representations Alan Robinson

We show that the poset of non-trivial partitions of {1, 2, . . . , n} has a fundamental homology class with coefficients in a Lie superalgebra. Homological duality then rapidly yields a range of known results concerning the integral representations of the symmetric groups Σn and Σn+1 on the homology and cohomology of this partially-ordered set. AMS Classification 05E25; 17B60, 55P91

متن کامل

Multiplicity of the Trivial Representation in Rank-selected Homology of the Partition Lattice

We study the multiplicity bS(n) of the trivial representation in the symmetric group representations βS on the (top) homology of the rankselected partition lattice ΠSn. We break the possible rank sets S into three cases: (1) 1 6∈ S, (2) S = 1, . . . , i for i ≥ 1 and (3) S = 1, . . . , i, j1, . . . , jl for i, l ≥ 1, j1 > i + 1. It was previously shown by Hanlon that bS(n) = 0 for S = 1, . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995